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Abstract. With the rapid expansion in the use of distributed systems the need
for optimisation and the steering of application execution has become more
important. The unquestionable aim to overcome bottle-neck problems,
allocation, and performance degradation due to shared CPU time has prompted
many investigations into the best way in which the performance of an
application can be enhanced. In this work, we demonstrate the impact of using a
Performance Prediction Toolset, PACE, which can be used in Dynamic (On-
The-Fly) decision making for optimising application execution. An example
application, the FFTW (The Fastest Fourier Transform in the West), is used to
illustrate the approach which itself is a novel method that optimises the
execution of an FFT. It is shown that performance prediction can provide the
same quality of information as a measurement process for application
optimisation but in a fraction of the time and thus improving the overall
application performance.

Keywords: Performance Optimisation, Dynamic Performance Prediction,
Performance Modeling, Application Steering, FFTW.

1 Introduction

Advances in technology, increasing user interaction with complicated systems, and
the existence of powerful communication networks, have all made it easier to create
high performance solutions. However, the ease in which these solutions can be
formulated is highly dependent upon the complexity of the available resources, and
the nature of the applications involved. A significant amount of work is being
undertaken to ease this process – much of which is based on the use of performance
information to guide the application execution on to the target systems. The promise
of Information Power GRIDS [1] relies on the availability of systems and the
utilisation of performance information to guide application execution.

Several performance tool-sets have been proposed and implemented dealing
mainly with performance instrumentation and measurement. Tools such as Falcon [2],
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Paradyn [3], and Pablo [4] are being used to assist in the performance tuning and
identification of bottlenecks in applications. These tool-sets typically include various
features to allow application instrumentation at various levels, data collection, and
interrogation through visualisation modules. Most of the performance monitoring
tools are used for post-mortem analysis – i.e. to investigate the performance after the
event has occurred. This may be in the analysis of the performance data after the end
of application execution, or dynamically as the application is being executed. Other
performance tools are being used to identify bottlenecks that may be inherent in the
application design on particular systems. For example TASS is concerned with the
relationship between parallel algorithms and architectures [5].

There has been very little work on dynamic optimisation using performance
prediction while an application is being executed. Modelling approaches have the
potential to provide the same performance information but without measurement on
the systems. Accuracy of the performance information is important, and should be
qualitatively the same as the measurements.

Several performance prediction tools are being developed including PAMELA
[6,7] which enables a performance model to be constructed at compile time and
combined with applications. This allows access to performance information whilst the
program is executing.

In this work, we demonstrate the impact of using Dynamic (On-The-Fly)
performance prediction to guide the execution of sequential applications. An example
high performance application, the FFTW (Fastest Fourier Transform in the West)
from MIT [8,9], is used to illustrate the possible use of this approach.

The toolset being developed at Warwick, PACE (Performance Analysis and
Characterisation Environment) [10,11] encompasses the performance aspects of
application software, its resource use and mapping, and the performance
characteristics of hardware systems. It enables performance models to be constructed
using an underlying performance specification language, CHIP3S (Characterisation
Instrumentation for Performance Predication of Parallel Systems) [11], and to be
evaluated dynamically requiring only a few seconds of CPU time. The model can be
compiled into a self-contained binary which can be executed and linked with an
application.

In this paper we show how a PACE performance prediction model can be used to
dynamically determine the execution behavior of an application. The FFTW is used to
demonstrate this capability but the approach is general and could be used in systems
which are dynamic in nature such as the Information Power GRIDs. The overall
performance of the FFTW can be improved due to a reduction in time required to
determine the best FFT calculation method for a given target processor. The outcome
of this work is to provide a performance modelling approach which can be used for
dynamic decision making, and also provides improvements to the FFTW
performance.

The use of dynamic performance prediction is introduced in Section 2. An
overview of the PACE toolset is given in Section 3. In Section 4, the FFTW package
is described and the use of PACE models are illustrated in Section 5. Results
comparing the default behavior of the FFTW and the FFTW with PACE performance
models are given in Section 6. These show that dynamic performance prediction can
be used to accurately undertake the decision making processes to optimise the FFTW
execution.
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2 Application Steering using Performance Prediction

There are a number of decisions that a user has to make in order to execute an
application. These are traditionally specified through the use of two types of
application parameters, broadly classed into two categories:

Problem parameters - those that specify the format of the data to be processed e.g.
data size, and the type of results required such as accuracy in a numerical
calculation, the number of iterations required in an iterative solution etc.

System parameters – those that specify how a target system will be utilised, e.g. in
specifying the number of processors to be used in a high performance system, and
possibly also to specify the platform to be utilised when several are available.

The problem parameters need to be specified by the user (always) and depend on
the calculation required. However, the system parameters are used to determine the
mapping of the application onto the available system, and are normally used to reduce
execution time. By coupling a performance model into the application, predictions
can be automatically made to determine these system parameters. These on-the-fly
decisions can be made with negligible overhead in comparison to the total application
execution time if the performance model is rapid in its evaluation.

In addition, there are many applications in which numerical routines are used
which may have many methods available for solution. Consider the situation depicted
in Fig. 1a where an application has several methods of solution and two target
systems are available. In this scenario, the user traditionally specifies the problem
parameters, decides on the actual code to be used, and the target system along with
relevant system parameters.

The use of a performance model in this example can be used to determine which
code should be executed, on which target system, along with the relevant system
parameters, based on achieving the minimum execution time. Thus, the user need
only specify the problem parameters, with the performance model directing the
application execution. Fig. 1b illustrates this situation, and shows the chosen code and
system (solid arrows), and other available choices (dotted arrows).
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Fig. 1. Execution of an application having multiple code implementations and available systems.
(a) User directed approach, (b) Performance directed approach.

The decisions made by the performance model require a number of separate
scenarios to be evaluated. Each scenario is a function of the mapping, the
implementation, and the available system(s). The best scenario is taken to be that
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which results in a minimum predicted execution time over the total number of
scenarios evaluated. Thus, rapid performance model evaluation time is required.

The FFTW is an example code having multiple implementations which minimise
the execution of a Fast Fourier Transform using an extensive measurement procedure
[8,9]. It is shown in Section 4 how this measurement procedure can be replaced using
performance prediction.

In addition, individual performance models can be used collectively within a task
scheduling environment in which a scheduler is responsible for maintaining useful
activity on system resources. The scheduling process is enhanced by use of predicted
execution times, and mapping information from each task, e.g. [12].

3 The Performance Analysis and Characterisation Toolset (PACE)

PACE is a modelling toolset for high performance and distributed applications. It
includes tools for model definition, model creation, evaluation, and performance
analysis. It uses associative objects organised in a layered framework as a basis for
representing each of a system’s components. An overview of the model organisation
and creation is presented in the following sections.

3.1 Model Components

Many existing techniques, particularly for the analysis of serial machines, use
Software Performance Engineering (SPE) methodologies [13], to provide a
representation of the whole system in terms of two modular components, namely a
software execution model and a system model. However, for high performance
computing systems, the organisation of models must be extended to take into account
concurrency. The layered framework is an extension of SPE for the characterisation
of parallel and distributed systems. It supports the development of several types of
models: software, parallelisation (mapping), and system (hardware). The functions of
the layers are:

Application Layer – describes an application in terms of a sequence of subtasks. It
acts as the entry point to the performance study, and includes an interface that can
be used to modify parameters of a performance scenario.

Application Subtask Layer – describes the sequential part of every subtask within an
application that can be executed in parallel.

Parallel Template Layer – describes the parallel characteristics of subtasks in terms of
expected computation-communication interactions between processors.

Hardware Layer – collects system specification parameters, micro-benchmark results,
statistical models, analytical models, and heuristics that characterise the
communication and computation abilities of a particular system.

In the layered framework, a performance model is built up from a number of
separate objects. Each object is of one of the following types: application, subtask,
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parallel template, and hardware. A key feature of the object organization is the
independent representation of computation, parallelisation, and hardware.

Each software object (application, subtask, or parallel template) is comprised of an
internal structure, options, and an interface that can be used by other objects to
modify its behaviour. The main aim of these objects is to describe the system
resources required by the application which are modelled in the hardware object.

Each hardware object is subdivided into many smaller component hardware
models, each describing the behaviour of individual parts of the hardware system. For
example, the memory, the CPU, and the communication system are considered in
separate component models e.g. [14].

3.2 Model Creation

PACE users can employ a workload definition language (CHIP³S) to describe the
characteristic of the application. CHIP³S is an application modelling language that
supports multiple levels of workload abstractions [11]. When application source code
is available the Application Characterization Tool (ACT) can semi-automatically
create CHIP³S workload descriptions. ACT performs a static analysis of the code to
produce the control flow of the application, operation counts in terms of SUIF
language operations, and the communication structure. This process is illustrated in
Fig. 2. SUIF (Stanford Intermediate Format) [15] is an intermediate presentation of
the compiled code that combines the advantages of both high level and assembly
language. ACT cannot determine dynamic performance related aspects of the
application such as data dependent parameters. These parameters can be obtained
either by profiling or with user support.

Source
Code

SUIF
Front End

SUIF
Format

User Profiler

A
C
T

Application
Layer

Parallelisation
Layer

Fig. 2. Model Creation Process with ACT.

The CHIP³S objects adhere to the layered framework. A compiler translates
CHIP³S scripts to C code which are linked with an evaluation engine and the
hardware models. The final output is a binary file which can be executed rapidly. The
user determines the system/application configuration and the type of output that is
required as command line arguments. The model binary performs all the necessary
model evaluations and produces the requested results. PACE includes an option to
generate predicted traces (PICL, SDDF) that can then further analyzed by
visualization tools (e.g. PABLO) [16].
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4 The Fastest Fourier Transform in the West (FFTW)

FFTW is a Portable C package that computes one or more dimensional complex
discrete Fourier Transform (DFT) [8,9]. It is claimed that the FFTW can compute the
transform in a faster time than other available software due to its self-configuring
nature. It requires a sequence of measurements to be made for it’s software
components (codelets) on the target system, and then uses a configuration of these to
determine how best to compute the transform of any given size. There are three
essential components that make up the FFTW, shown in Fig. 3.
Codelets: These are a collection of highly optimized  blocks of C routines, which are

used to compute the transform. The codelets are generated automatically. There
are two types of Codelets:

Non-Twiddle: codelets that are used to solve small sized transforms (N <= 64),
and

Twiddle: codelets that solve larger transforms by the combination of smaller
ones.

Planner: The planner determines the most efficient way in which the codelets can be
combined together to calculate the required transform. Each individual
combination of codelets is called a plan. Typically 10’s of plans are available for a
specific FFT size.

Executor: The execution of each plan is performed and measured by the Executor.
This results in the run-time cost of each plan on a specific system. From this, the
best plan can be determined – i.e. the plan with the minimum execution time.

(32)
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Planner

Codelet
(2)Codelet

(2)Codelet
(2)

N
(Array Size)

Executor

Best Plan

(min)

System Specific

(2)
(16)

(8)

Fig. 3. Main components of the FFTW

For example, for the FFTW to compute the transform of a complex array with a
size N, the Executor factors it first into N = N1N2. Then, N2 transforms of N1, and N1

transforms of N2 are recursively computed hence calculating the exact transform of
the complex array recursively.

Assuming that a complex array of size N=64 is to be transformed, the number of
possible FFTW plans is 20 as shown in Table 1. The plans are forwarded one by one
to the Executor for measurement on the target system. The resulting execution times
from each plan are included in Table 1 for a SUN Ultra 1. In this plans 1 to 6 contain
only a twiddle codelet, and the remaining plans contain both a Twiddle and Non-
Twiddle codelets. Plans that compute the full transform are numbers 1, and 16-20
(the remaining plans represent transforms of smaller sizes and may be a part of other
plans). In this case, the best (fastest) plan to solve the N=64 transform is Plan 16,
which is computed by the Non-Twiddle Codelet 2 and Twiddle Codelet 32.
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Table 1. Example FFTW plans for N=64 (Timings for SUN Ultra 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2
3
4
5
6
7
8
9

10
16
32
64

C
o

d
el

et
 S

iz
e

Plan #

Time µS

Twiddle
Codelets

Non-Twiddle
Codelets

65 27 11 5 2 1 7 11 14 20 24 29 41 45 51 63 88 92 96 112

The performance of FFTW relies heavily on the successful selection of the best
plan. The procedure for selecting the optimum configuration comes with a high initial
cost that involves the measurement of every plan, a process that needs to be repeated
several times in order to remove measurement noise induced by system load. The
initial tuning stage cost is exponentially increases when the size of the problem grows
due to the resulting larger number of possible transformations.

5 Dynamically predicting the FFTW performance

The measurement procedure required by the FFTW to select the best plan for a
specific system can be replaced by using a set of PACE performance models.
Separate models can be formed of individual codelets, and the operation of the
planner implemented by selecting the minimum predicted execution time of an
appropriate set of codelet models.

The model that represents the initial tuning stage of the FFTW includes a single
application task that mimics the operation of the Planner. The models for the
individual codelets are automatically generated by analyzing the existing codelet
codes by ACT. A subtask represents an individual codelet called by the planner to
produce a possible solution.

The PACE performance model generates and evaluates all possible plan models,
instead of actually executing the codelets on the target platform. The planner uses the
individual codelet model predictions to combine them to overall plan performance
predictions. The planner keeps a record of all plan predicted times in order to identify
the fastest combination. The predicted optimum plan is then used by the FFTW
executor to perform the transformation. The evaluation of each plan can be performed
for a range of systems and problems sizes. The evaluation time for this process is
orders of magnitude smaller than the corresponding measurements. An overview of
the prediction process is shown in Fig. 4.

The validity of the PACE optimization depends on the selection of the optimum
plan. To achieve this the performance models require accurate prediction of each
FFTW plan’s execution time. The advantage of using PACE models is to minimize
the initial measurement time that FFTW requires for each data size and each new
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target system. Another advantage of using PACE to predict the best plan is reduce the
influence of background loading which may effect the measurement procedure.
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Fig. 4. Components of the FFTW using PACE performance prediction.

6 Results

In this section we present a comparison of plan execution times (measured from
FFTW) versus plan predicted times evaluated from PACE models for a range of array
data sizes and workstations. In all cases PACE and FFTW best plans are calculated to
be the same.

Four sets of comparisons between measurements and predictions for the execution
of the FFTW for different configurations are shown in Figs. 5a to 5d. In all cases, the
X-axis includes all the plans generated by the FFTW planner. Note that the plans
generated include combinations of codelets that might not successfully compute the
entire FFT. The FFTW planner generates redundant plans assuming that they might
be needed by future twiddle codelets.

Table 2. Comparison of plan execution time (s) versus model evaluation times for a range of
array sizes running on SUN Ultra 10 and SUN Ultra 1 workstations.

SUN Ultra 1 SUN Ultra 10
Size FFTW (s) PACE (s) FFTW (s) PACE (s)
256 0.006 0.007 0.003 0.005
2 K 0.059 0.010 0.032 0.006
128 K 7.069 0.130 3.842 0.009
196 K 16.537 0.028 8.761 0.018

Table 2 shows the time required for the  FFTW executor to measure all plan scenarios
vs. the time required to evaluate the plan models for several problem and system
configurations. The array size varies from small arrays (256 elements) to more
realistic cases with 196K elements. Timings are provided for the Sun Ultra 10 and
Sun Ultra 1 workstations. With the exception of the 256 elements case the PACE
model evaluation times are orders of magnitude faster than the execution times. Thus
using PACE models results in a performance improvement to the FFTW.
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Fig. 5. Comparison of FFTW execution times and PACE Performance Predictions.

7 Conclusion

In this work we have shown how a novel performance prediction system may be
applied for on-the-fly performance prediction to steer the execution of applications.
The PACE system enables a performance model to be incorporated into an
application executable and can be used in a decision making procedure to determine
how the application can be executed on the target system. Accurate predictions can be
produced using this toolset, and rapid evaluation of the performance models enables
on-the-fly use.

The FFTW high performance application was used to illustrate the approach. The
existing application contained a costly measurement process to determine how best to
calculate the transform on the target system. By incorporating a PACE performance
model, it was shown that the same process could be undertaken using performance
prediction in a fraction of the time, but resulting in the same transform calculation.

The PACE system is currently being extended to provide support for performance
prediction in computational environments which may be dynamically changing, and
to aid the scheduling of multiple applications on available resources. This corresponds
in part to the challenges currently posed by the development of Computational GRIDs
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